Low-rank Kernel Matrix Approximation using Skeletonized Interpolation with Endo- or Exo-Vertices

Zixi Xu, <u>Léopold Cambier</u>, Eric Darve (Stanford University)
Pierre L'Eplattenier, François-Henry Rouet, Yun Huang,
and Cleve Ashcraft (Livermore Software Technology Corporation)

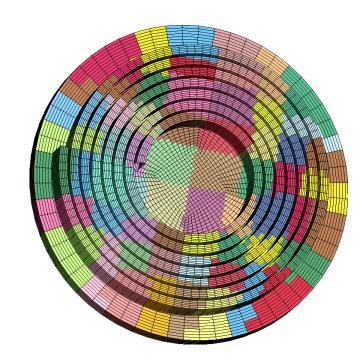
Integral equations & linear systems

$$a(x)u(x) + \int_X \mathcal{K}(x,y)u(y)dy = f(x) \qquad (aI)u + K_{n,n}u = f$$

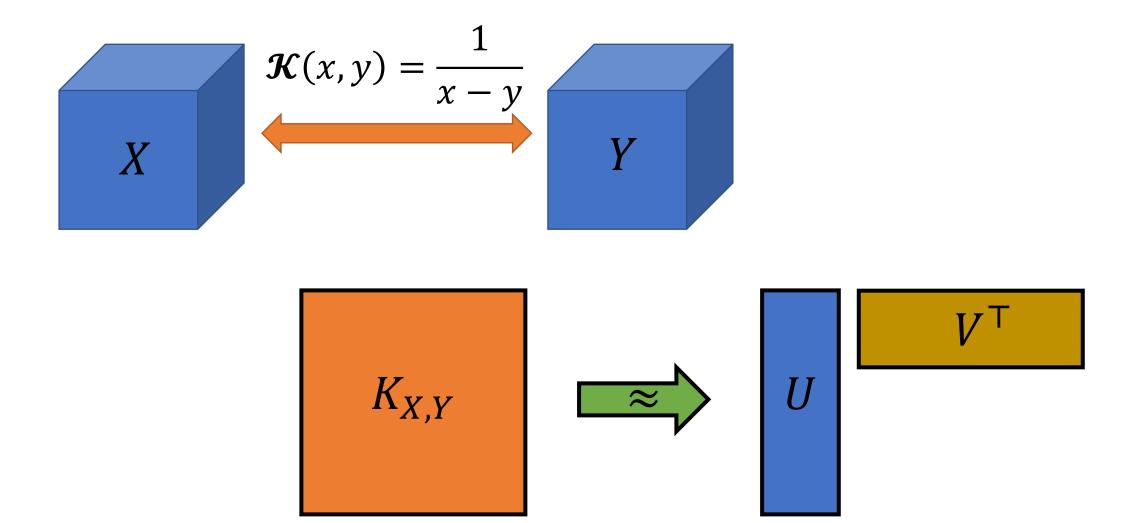
$$K_{n,n} = \begin{bmatrix} K_{X_1,X_1} & \dots & K_{X_1,X_n} \\ \dots & \dots & \dots \\ K_{X_n,X_1} & \dots & K_{X_n,X_n} \end{bmatrix}$$

$$K_{ij} = \mathcal{K}(x_i, y_j)$$

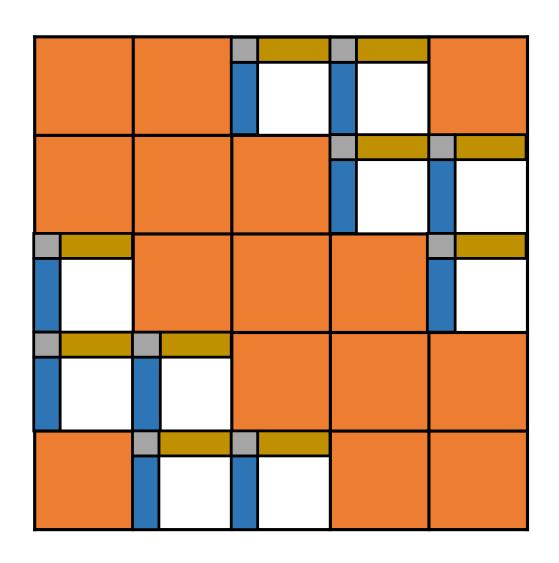
$$(aI)u + K_{n,n}u = f$$



Low-rank off-diagonal blocks



Low-rank off-diagonal blocks



How to build the low-rank approximation

Rank-revealing LU factorization

$$P_{\hat{X}} K_{XY} P_{\hat{Y}} = P_{\hat{X}} \begin{bmatrix} K_{x_1 y_1} & \cdots & K_{x_1 y_n} \\ \vdots & \ddots & \vdots \\ K_{x_n y_1} & \cdots & K_{x_n y_n} \end{bmatrix} P_{\hat{Y}}$$

$$\approx L_{1:n,1:r} U_{1:r,1:n} = K_{X\hat{Y}} K_{\hat{X}\hat{Y}}^{-1} K_{\hat{X}Y}$$

How to build the low-rank approximation

Rank-revealing LU factorization with extended set

$$P_{\widehat{X}} \begin{bmatrix} K_{X^{\circ}Y^{\circ}} & K_{X^{\circ}Y} \\ K_{XY^{\circ}} & K_{XY} \end{bmatrix} P_{\widehat{Y}} \approx K_{X\widehat{Y}} K_{\widehat{X}\widehat{Y}}^{-1} K_{\widehat{X}Y}$$

Skeletonized Interpolation

How to pick \hat{X} and \hat{Y} ?

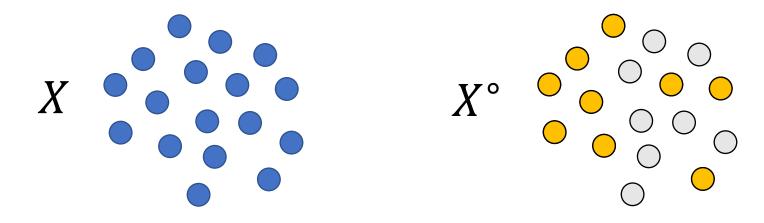
Algorithm

- 1. Generate candidates X° and Y°
- 2. Build $K^{\circ} = K_{X^{\circ},Y^{\circ}}$
- 3. Select $\hat{X} \subset X^{\circ}$, $\hat{Y} \subset Y^{\circ}$ by performing RRQR over K° and $K^{\circ \top}$ up to tolerance ε
- 4. Return

$$K_{X,Y} \approx K_{X,\widehat{Y}} K_{\widehat{X},\widehat{Y}}^{-1} K_{\widehat{X},Y}$$

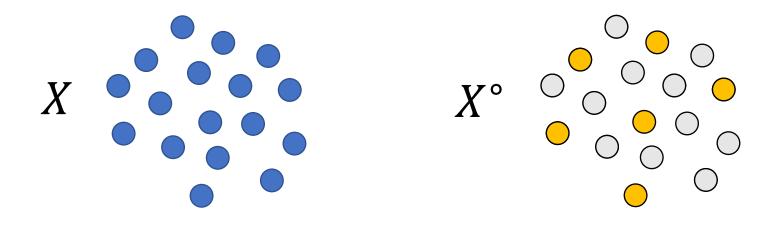
Different ways to define X° and Y° Endo-vertices: subsets of X and Y

$$X^{\circ} = \operatorname{random}(X)$$

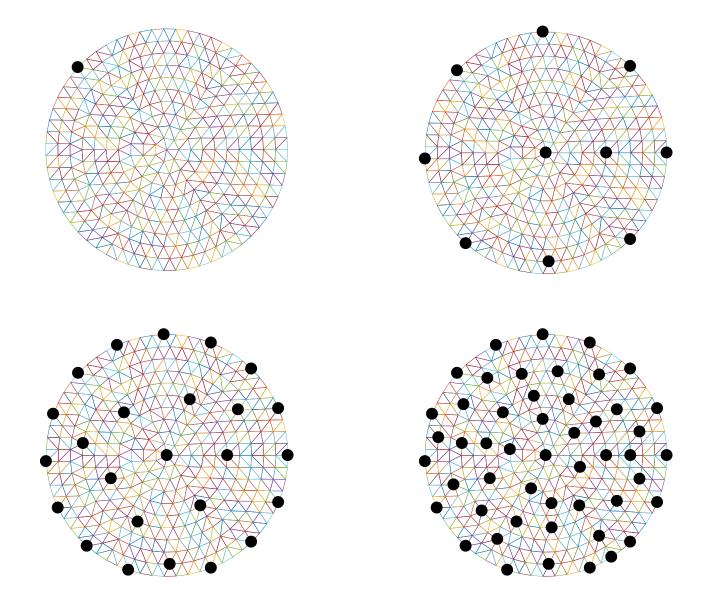


Different ways to define X° and Y° Endo-vertices: subsets of X and Y

$$X^{\circ} = MDV(X)$$

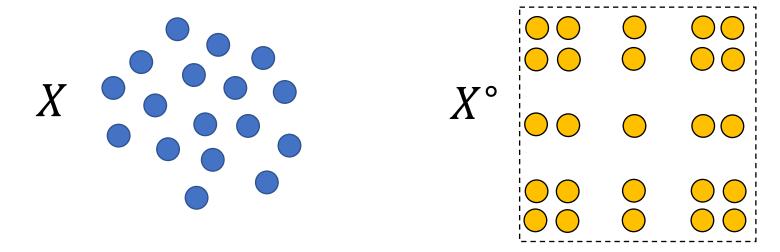


MDV



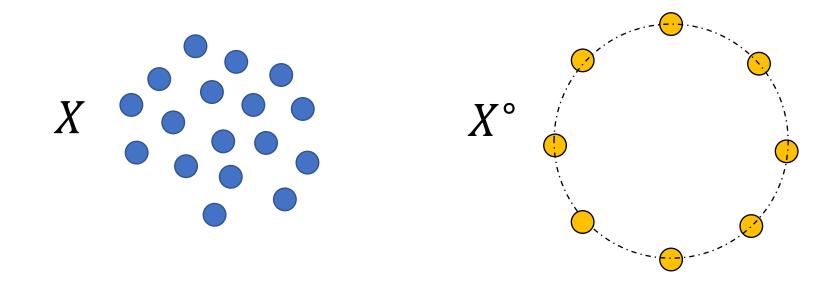
Different ways to define X° and Y° Exo-vertices: outside of X and Y

$$X^{\circ} = \text{chebyshev}(X)$$



Different ways to define X° and Y° Exo-vertices: outside of X and Y

 $X^{\circ} = \text{enclosing_surface}(X)$



Which one is best?

$$K^{\circ} = K_{X^{\circ},Y^{\circ}}$$
$$r_{0} \times r_{0}$$

$$K_{X,Y} \approx K_{X,\widehat{Y}} K_{\widehat{X},\widehat{Y}}^{-1} K_{\widehat{X},Y}$$

$$r_1 \times r_1$$

We want

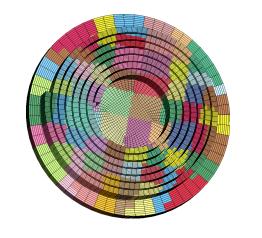
 r_0 as small as possible

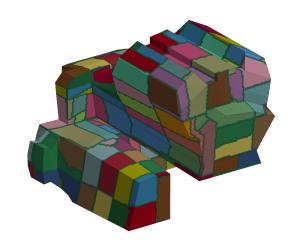
r₁ close to optimal SVD-rank

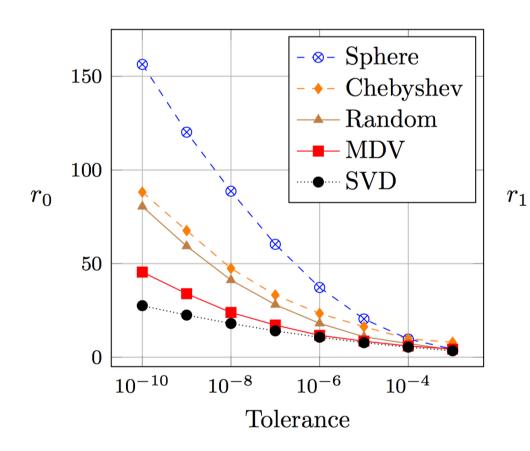
such that

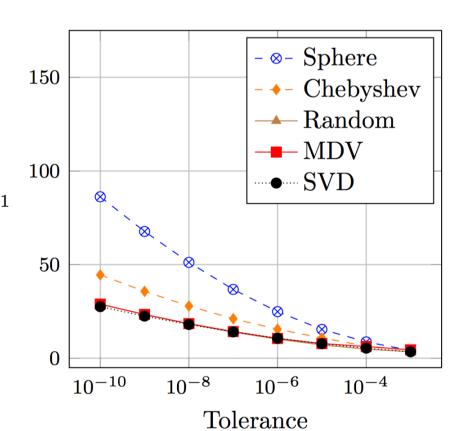
$$||K_{X,Y} - K_{X,\widehat{Y}}K_{\widehat{X},\widehat{Y}}^{-1}K_{\widehat{X},Y}|| \approx \epsilon$$

Overall, MDV is best: near-field

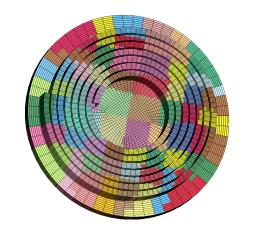


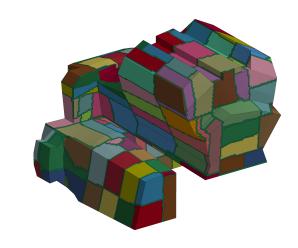


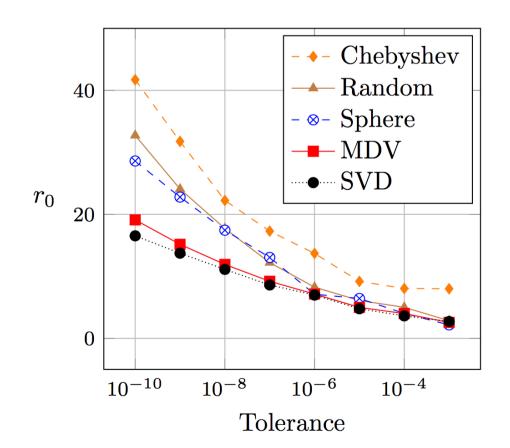


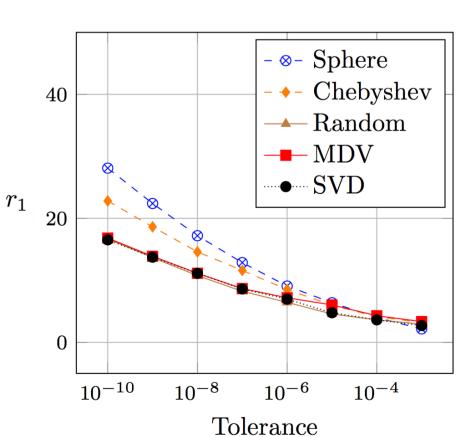


Overall, MDV is best: far-field

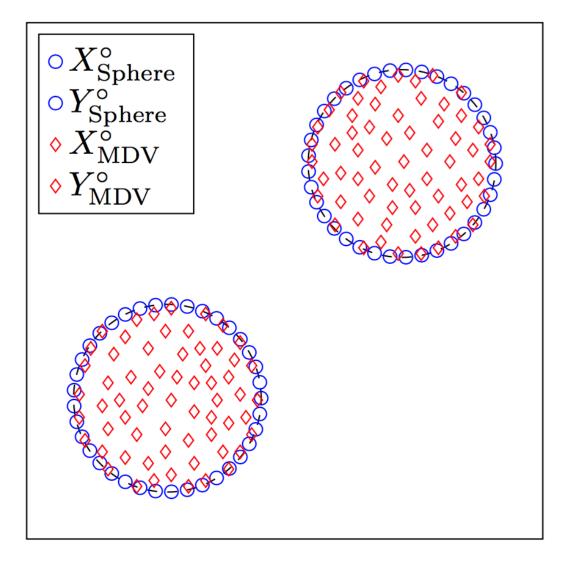


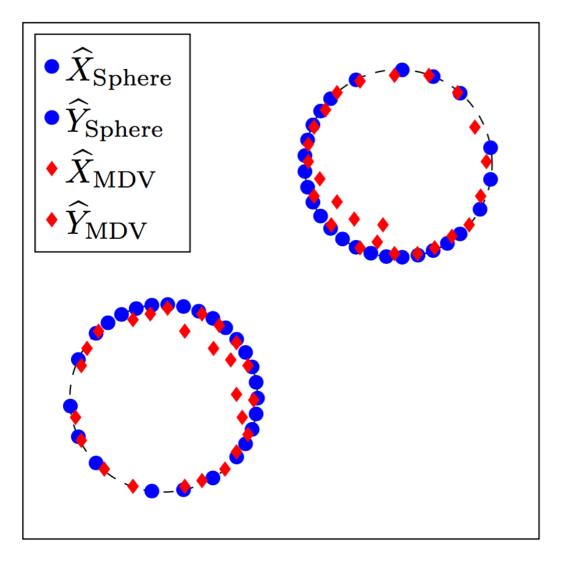




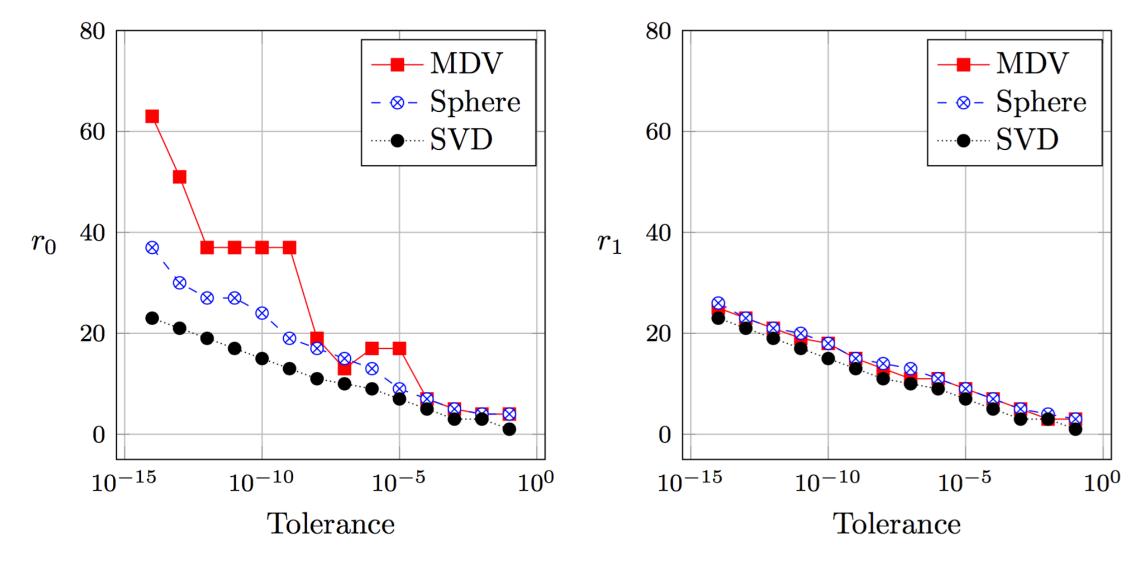


But not always: enclosing surface best





But not always: enclosing surface best



Conclusion

- Smooth kernel functions have low-rank kernel matrices for wellseparated clusters
- Pre-selecting vertices using MDV leads to cheap & near-optimal factorization in most cases
- However, not always the best algorithm for all problems